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Influence functions are useful to determine the effect that certain training data samples have on
the predictions that a model makes. This post discusses the intuition behind influence functions in
relation to machine learning, and how the use of influence functions can explain where a model’s
fairly black-box predictions come from and how they can be attributed to dataset error (i.e. mis-
labeled data points) and outliers. All influential data samples are outliers, but not all outliers are
influential. The use of influence functions can help distinguish between these two types of samples
and learning about the effect of the input dataset. Before we dig into the intuition, let us set up
our problem space.

1 Setting up the problem

Suppose we want to classify the content of two types of images: cats and dogs. Our dataset is a
bivariate distribution (i.e. we have two variables and they follow different distributions). Let us
say that our model classifies cats with a 60% true positive rate and classifies dogs with 99% true
positive rate. Why does our model perform poorly on images of cats and is it because of our data?
Essentially we want to understand the effect of our training samples on our model’s parameters.
We can answer this question by posing a counterfactual question: how would our model’s parameters
change if we removed a certain training sample? The easiest way to measure this is to create two
models. One is the original model, and the second is a version of the same model trained with
a particular data point, z, removed. The difference between the parameters of these two models
represents the influence of z.
However, it would be prohibitively slow for us to do this for every data sample in our dataset.
Influence functions can help us estimate the changes in our model when certain training samples
removed, without having to retrain the model every time.

2 Formalizing the problem

2.1 Empirical risk minimization

Let us formalize our problem using the notion of empirical risk minimization. In a supervised
learning algorithm, we aim to learn a function h : X → Y which maps training examples, X to
labels Y . Suppose we have n training examples of the format (xi, yi) for 1 ≤ i ≤ n where xi ∈ X
and yi ∈ Y . An ideal model h∗ performs such that h∗(xi) ≈ yi.
In supervised learning we also have a loss function, L(h(xi), yi), which estimates how close a
predicted label is to the actual label. For the purposes of this post, let us assume that this loss
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function is differentiable (i.e. we can take the derivative at every point).
Given this loss function, we now want to estimate the risk associated with a given model ĥ. For the
purposes of this application, risk, written as R(h), is a statistical measure that quantifies the degree
to which an estimate from a given model ĥ is likely to be inaccurate. For example, a higher risk
means that ĥ is likely to output inaccurate predictions, and a lower risk means that ĥ is likely to
output more accurate predictions. Risk is defined as the expected value of loss for this model. This
can be calculated using the integral w.r.t the probability density function of our dataset, P (x, y).

R(h) = E[L(h(x), y)] =

∫
L(h(x), y)dP (x, y) (1)

However, we don’t know the prior or underlying distribution P (x, y); in the example above, we
don’t know what the distribution of all cat and dog images look like. This means that it is not
possible to calculate R(h) directly. Instead, we can calculate empirical risk or Remp, which is the
average of the loss values for each sample in our dataset. This doesn’t require an understanding of
the true underlying joint distribution P (x, y).

Remp(h) =
1

n

∑
i=1

L(h(xi), yi) (2)

If you are familiar with the use of loss functions in machine learning, you know that we want to
minimize loss as our model trains. This is analogous to minimizing empirical risk. An ideal model,
h∗, minimizes empirical risk.

h∗ = arg min
h∈H

Remp(h) (3)

2.2 Understanding the effect of training samples on our model

Our original goal was to determine how our model would be affected if we removed a particular
training samples. When we think about what a given model ĥ has learned, we are referring to the
parameters, or weights, written as θ̂. If we removed sample k, (xk, yk), from our training set, the
corresponding change in parameters would be θ̂−k − θ̂.
This change in parameters is what will allow us to determine the influence of the particular training
sample k. θ̂−k corresponds to the weights of the model ĥ−k which can be expressed using the
notation from above as

ĥ−k =
1

n

∑
i=1,i 6=k

L(h(xi), yi) (4)

It is important to note that we need to set the model that we are investigating, ĥ, prior to under-
standing the influence of a particular training sample. This means that ĥ has the same architecture
as ĥ−k, the only difference between them being that ĥ−k was trained without the sample k.
The change in parameters represented by θ̂−k − θ̂ is equivalent to computing the parameters θ̂
except by downweighting the sample k. When we weight this sample, we essentially change the
importance of it in our dataset. If we choose to weight it by −1n , this is equivalent to removing it
from our dataset.
As of now, we know which sample in our training set we want to weight, and we know the parameters
of our model ĥ. This leads us perfectly into what an influence function can tell us.
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3 What do influence functions tell us?

For the purposes of this set of notes, let us assume that influence functions are a black box that take
in the parameters of a model and the sample to weight. We will weight this sample by − 1

n which
is equivalent to removing that sample from our training set. An influence function, I, can give us
a tractable approximation ofthe following change in parameters without retraining the model:

θ̂−k − θ̂ ≈ −
1

n
∗ I(θ, k)

Notice that we multiply the value that the influence function gives us by the quantity to weight the
sample k. The output of an influence function is a value that can tell us whether the input data
sample was beneficial or detrimental to the performance of this model. But how does an influence
function look? The following is the form of the function:

−H−1
θ̂
δθL(k, θ̂)

Note that this function uses θ̂, which are the parameters of our model ĥ, and k, which is the data
sample we want to weight. It also references the loss function, L. This intuitively makes sense
because the loss can tell us which samples change the parameters of the model the most. The
samples that change the parameters of the model the most are influential, and taking a look at
these influential samples can help us understand why our model performs the way that it does.
Let us take it back to our initial problem, with classifying cats and dogs. Recall that our goal is to
classify images of cats and dogs with as high accuracy as possible, but that we misclassify cats 40%
of the time, even though our classifier is good at recognizing dogs. Let’s use influence functions to
help us understand why our model performs in this way.

The first step is to use the influence function with a weight of − 1
n for each of the samples in our

dataset; using this weight is analogous to taking each sample out of our dataset and retraining
a model without it. For each sample, we get an associated influence function score. The higher
the score, the more the corresponding sample influences our model. Suppose we do this for every
sample and find that a portion of the images classified as cats have high influence scores. Upon closer
inspection, we realize that these images contain wild cats, and not house cats. When we analyze
the outputs of our model, we also notice that many of these influential samples were misclassified
as dogs. We can now explain the performance of our classifier; it was confused because of outlier
images in the training dataset.
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